1	(i)	(A)	Distance travelled = Area under the graph $\frac{1}{2} \times 4 \times 8+\frac{1}{2} \times 4 \times(8+12)+4 \times 12$ $104 \text { m }$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Attempt to find area Splitting into suitable parts Cao Allow all 3 marks for 104 without any working
	(i)	(B)	Either Working backwards from distance when $t=12$ $\begin{aligned} & 12-\frac{(104-100)}{12} \\ & 11.67 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow this mark for 0.33... Follow through from their total distance Сао
			Or Working forwards from when $t=8$ $\begin{aligned} & 8+\frac{(100-56)}{12} \\ & 11.67 \mathrm{~s} \end{aligned}$	M1 M1 A1	Allow this mark for 3.67... Follow through from their distance at time 8s Cao
				[6]	
	(ii		Substituting $t=8$ gives $v=\frac{5}{2} \times 8-\frac{1}{8} \times 8^{2}=12$	B1 [1]	

Question		Answer	Marks	Guidance
1	(iii)	$\begin{aligned} & \text { Distance }=\int_{0}^{12}\left(\frac{5 t}{2}-\frac{t^{2}}{8}\right) \mathrm{d} t \\ & {\left[\frac{5 t^{2}}{4}-\frac{t^{3}}{24}\right]_{0}^{12}} \\ & {[180-72] \quad(-[0])} \\ & 108 \mathrm{~m} \end{aligned}$	M1 A1 M1 A1 [4]	Integratin v. Condone no limits. Condon no limits Substituting $t=12$
	(iv)	Model P: distance at $t=11.35$ is 96.2 Model Q: distance at $t=11.35$ is $\left[\frac{5 t^{2}}{4}-\frac{t^{3}}{24}\right]_{0}^{1135}=100.1$ Model Q places the runner closer	B1 M1 E1 [3]	Ca Substituting 11.35 in their expression from part (iii) Cao from correct previous working for both models
	(v)	Model P: Greatest acceleration $\frac{8}{4}=2 \mathrm{~m} \mathrm{~s}^{-2}$ Model Q: $a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{5}{2}-\frac{t}{4}$ Model Q: Greatest acceleration is $2.5 \mathrm{~m} \mathrm{~s}^{-2}$	B1 M1 A1 B1 [4]	Differentiating v Award if correct answer seen

PhysicsAndMathsTutor.com

		mark	note
2(i)		$\begin{array}{r} \text { B1 } \\ \text { B1 } \\ \quad 2 \\ \hline \end{array}$	Section from $t=10$ to $t=15$ Section from $t=15$ to $t=20$. FT connecting from their point when $t=15$. Ignore graph outside $0 \leq t \leq 20$.
(ii)	$\begin{aligned} & \frac{-6-14}{10}=-2 \\ & \text { so }-2 \mathrm{~m} \mathrm{~s}^{-2} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & 2 \end{aligned}$	Attempt at $\frac{\Delta v}{\Delta t}$
(iii)	either Displacement is $\frac{14}{2} \times 7-\frac{13+5}{2} \times 6$ or $\frac{14}{2} \times 7-\frac{3 \times 6}{2}-5 \times 6-\frac{5 \times 6}{2}$ $=-5$ so 5 m downwards	$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	FT misread from graph or graphing error to all but final A1 cao Attempt at whole area. Condone 'overlap' but not 'gaps'. 'Positive' area expression correct. Condone sign error. ‘Negative’ area expression correct. Condone overall sign error. Accept -5 m cao

or Displacement is $14 \times 10+\frac{1}{2} \times(-2) \times 10^{2}-5 \times 6+\frac{-6+0}{2} \times 5$	M1	Asing suvat from 0 to 10 or 15 to 20. Condone 'overlap' but not 'gaps'	
$=140-100-30-15=-5$	A1		
so 5 m downwards	A1	Subtracting 30 or 15 or 45 Accept -5 m cao	
		4	

3 (i)	$\begin{aligned} & 0<t<2, v=2 \\ & 2<t<3.5 v=-5 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Condone '5 downwards' and ' - 5 downwards’	2
(ii)		B1	Condone intent - e.g. straight lines free-hand and scales not labelled; accept non-vertical sections at $t=2 \& 3.5$. Only horizontal lines used and $1^{\text {st }}$ two parts present. BOD t-axis section. One of $1^{\text {st }} 2$ sections correct. FT (i) and allow if answer correct with (i) wrong All correct. Accept correct answer with (i) wrong. FT (i) only if $2^{\text {nd }}$ section -ve in (i)	
(iii)	(A) upwards; (B) and (C) downwa	E1	All correct. Accept +/- ve but not towards/away from O Accept forwards/backwards. Condone additional wrong statements about position.	
				1
				5

		Mark	Comment	Sub
4(i)	When $t=2$, velocity is $6+4 \times 2=14$	A1	Recognising that areas under graph represent changes in velocity in (i) or (ii) or equivalent uvast.	
(ii)	Require velocity of -6 so must inc by -20 $-8 \times(t-2)=-20$ so $t=4.5$	M1	FT $\pm(6+$ their 14) used in any attempt at area/ uvast FT their 14 [Award SC2 for 4.5 WW and SC1 for 2.5 WW$]$	2
		4		2

